

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 2 Feb. 2023, pp: 822-833 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0502822833 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 822

Survey on SQL Injection and Cross-Site

Scripting Malware Injection Attacks

Suren Krishnan1, Mohamad Fadli Zolkipli2
1
Awang Had Salleh Graduate School, School of Computing, Universiti Utara Malaysia, Kedah, Malaysia

2
School of Computing,Universiti Utara Malaysia,Kedah, Malaysia.

--- ---------

Date of Submission: 15-02-2023 Date of Acceptance: 25-02-2023

--- ----------

ABSTRACT: A malware injection attack is a type

of cyberattack where an attacker exploits

vulnerabilities in software applications to inject

malicious code into a target system. This code can

then execute unauthorized commands, steal

sensitive data, or provide unauthorized access to

the attacker. In this overview, we will overview the

different types of malware injection attacks, SQL

injection attack and Cross-Site scripting injection

attack. We will also discuss the techniques used by

attackers to initiate these attacks and exploiting

unpatched vulnerabilities. Additionally, we will

explore the ways in which organizations can defend

against these attacks, including automated

reasoning with static analysis, a prototype approach

called AMNESIA, white-box and black-box

vulnerability scanners, firewalls, Hybrid

Approaches of Mitigation, XPath expressions and

regularly patching software. Overall, this overview

will provide a comprehensive understanding of

malware injection attacks and the steps

organizations can take to protect themselves

against them.

KEYWORDS:Malware injection attack,SQL

injection, Cross-site scripting.

I. LITERATURE REVIEW
Malware injection attacks are a common

and persistent threat in today's cyber landscape.

They can cause significant damage to

organizations, resulting in data theft, financial loss,

and reputational damage. These attacks involve the

injection of malicious code into a targeted system,

which can then perform unauthorized actions, such

as stealing sensitive data or giving an attacker

remote control over the compromised system. As

software applications become more complex, the

number of potential vulnerabilities increases,

providing attackers with a greater opportunity to

exploit weaknesses in a system's defense.

Therefore, it is critical for organizations to

understand the different types of malware injection

attacks, the methods used by attackers to initiate

them, and the steps that can be taken to prevent

them. All vibrant web applications have one thing

in common where they all require the usage of a

database to keep information, which can then be

retrieved by the user or created, modified, or

removed. Rational databases are the most common

form of database. SQL is the language used by

most relational database management systems,

comprising Oracle, MS SQL, MySQL server,

Postgres and MS Access. SQL's flexibility makes it

an excellent language. It enables the individual to

request information without having any

understanding of how the information will be

obtained. An attacker can delete information from

the database using compromised availability data.

An attacker can directly affect the host operating

system through remote command execution [1].

Nevertheless, the widespread usage of

SQL-based systems has drawn the attention of

attackers. A common security risk to database-

driven web applications is the SQL injection attack.

When a SQL injection attack becomes successful,

the hacker is given access to crucial private data.

The server and client tiers are two of the

conventional execution levels seen in contemporary

online applications. According to Maurel, Vidal,

and Rezk [2] a range of languages are needed for

the writers to complete the steps, including

JavaScript for the web client and Node.js and PHP

for the web server. A TCP SYN flood of segment,

for example, could be an IP address brush that

causes a running host to respond or it could be a

SYN flood attack that seeks to overwhelm the

network and render it unreliable. Intelligence

gathering activities may be seen as a harbinger of

an imminent attack because attackers often inspect

targets before attacks. In other words, it is the

beginning of the onslaught. As a result, it might be

difficult to distinguish between offensive and

reconnaissance actions when using the phrase

"exploit." Both our daily lives and our enterprises

now place a high value on computer networks and

the Internet. As we rely increasingly on computers

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 2 Feb. 2023, pp: 822-833 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0502822833 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 823

and communication networks, malicious activity is

increasing in frequency. A significant issue in the

current communications environment is network

attacks. You must monitor and analyse network

traffic to find harmful activities and attacks if you

want to make sure that your network operates

dependably and that user data is secure [3].

II. INTRODUCTION
These days, web applications such as

courses, shopping, social networks, banking, online

services, and email play a significant part in online

business. Because of their accessibility and

convenience of using it, web applications are more

widely used to provide online services than in-

person services. To access a web application and

enjoy the online services it offers, all a basic user

requires a computer and a connection to the

internet.Because they provide attackers unrestricted

access to the databases that power the program and

the potentially sensitive data they contain, web

applications are significantly at risk from SQL

injection attacks[5]. The SQL injection problem

has been addressed in a variety of ways by

practitioners and researchers, however, current

solutions either don't fully address the scope of the

problem or have disadvantages that hinder their

usage and acknowledgement. The huge diversity of

attack techniques available to individuals aiming to

exploit SQL injection problems is so broad that

only a small part of them is known by several

scholars and practitioners [5].

It is very necessary to create a networking

environment that is both useful and secure. If a

vulnerability exists on widely used websites, then

many people will be targeted, which would have

unimaginable consequences. Cross-site scripting,

often known as XSS, is one of the vulnerabilities

that is most frequently found in web

applications.This overview will provide a

comprehensive analysis of malware injection

attacks, including the techniques used by attackers,

the different types of attacks, and the various

measures that can be implemented to protect

against them. By examining these factors,

organizations can take proactive steps to mitigate

the risks of malware injection attacks and safeguard

their critical assets.The goal of this paper is to

detectand prevent malware injection attacks from

being injected into a system or application by an

attacker, and to detect and remove any such

malware that may have already been injected.

Malware injection attacks can be very harmful to a

system, as they can allow an attacker to gain

unauthorized access, steal data, or cause other types

of damage.The rest of the paper is organized as

follows: Section 2 describes literature review of

malware injections attacks. Section 3 will discover

various types of malware injection attacks.Section

4 will explore the techniques and threat models of

malware injection, including how the injections

occur, the impact of the attacks, and malware

injection detection and prevention. Section 5

explores the challenges of malware injections and

discussions. Section 6 concludes this article in the

conclusion part and follows with

acknowledgements and references.

III. SQL INJECTION ATTACK
i. Introduction

SQL injection vulnerabilities have been

identified as one of the main threats to Web-based

systems. Applications on the web that are

vulnerable to SQL injection might provide an

intrusive party full access to the databases at their

base. These databases typically include sensitive

user or customer information, and security breaches

can result in fraud, unlawful access, and the

deletion of personal data. In rare circumstances,

attackers can even control and through a SQL

injection vulnerability, the web application's

hosting system might be damaged. The prevalence

of web applications that are liable to SQL Injection

Attacks (SQLIAs) has been demonstrated by a

Gartner Group analysis of over 300 Internet

websites, showing that the most of them could be at

risk. High-profile victims including FTD.com,

Guess Inc. and Travelocity have been successfully

targeted by SQLIAs. SQL injection is a type of

code-injection attack in which user information is

inserted into a SQL query in such a manner that a

part of the user's input is interpreted as SQL code

[6].

ii. Techniques

Many other methods have been suggested

by researchers to deal with the SQL injection issue.

These methods cover everything from fully

autonomous frameworks for identifying and

avoiding SQLIAs to development industry

standards. The benefits and drawbacks of each

strategy are listed below after we analyze the

techniques that have been offered. Inadequate

validation is the main factor contributing to SQL

injection flaws. Accordingly, employing

appropriate defensive coding standards is the

simple fix for closing these loopholes. In this

article, we offer a summary of some of the top

recommendations made for avoiding SQL injection

vulnerabilities. Depending on the strategy,

attackers may use one of three fundamental

techniques to carry out SQL injections.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 2 Feb. 2023, pp: 822-833 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0502822833 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 824

There are three distinct varieties of SQLi,

which are referred to as In-band SQLi, Inferential

SQLi, and Out-of-band SQLi. SQL injections are

used to gain access to databases and evaluate the

severity of any possible harm. The simplest kind of

SQL injection attack happens when a hacker

utilizes the same interaction channel to issue and

receive the results of a logical SQL command in-

band. This is the most common form of SQL

injection attack. SQL injection based on faults and

SQL injection based on unions are the two most

common methods for performing SQL injection in-

band. Both techniques are also known as fault

injection and union injection. SQLI Using the

Blind Inferential Operator Because neither the data

nor the outcome of the send are disclosed by the

web service during an inferential SQLI attack, the

perpetrator of the assault cannot determine how it

will turn out. Injecting payloads into a Deductive

Reasoning SQL injection and watching the

responses from both the web application and the

database server allows an attacker to rapidly alter

the database schema [7].

Verifying input type Injecting instructions

into a text or numerical argument can be used to

conduct SQLIAs. One possibility is to outlaw the

usage of these meta-characters doing so would

make it more difficult for non-malicious users to

provide legitimate inputs including these

characters. Utilizing routines that encrypt strings in

a way that the database interprets all meta-

characters as regular characters is a preferable

method. A positive pattern matching is where the

data verification procedures that distinguish

between good and incorrect input should be

established by developers. Positive validating is the

generic term for this method as compared to

negative validating, which scans insight for illegal

sequences or SQL tokens. Positive validation is a

safer technique to check inputs because developers

might not be able to foresee every sort of attack

that could be launched against their application but

should be able to describe all the permissible input

formats. In terms of identification of all input

sources, all entry to the program must be verified

by the developers[8].

There are several potential entry streams

for applications. These input resources may be used

to build a query, which might allow an attacker to

include a SQLIA. Briefly stated, every input source

has to be looked out. Though defensive coding

techniques remain the finest approach to avoid

SQL injection problems, their practical

implementation is challenging. In contrast to

automatic methods, defensive coding is less often

utilized and more vulnerable to human error. Even

if most developers do make an attempt to write safe

code, it is very challenging to follow defensive

coding best practices consistently across all input

types. Many SQL injection vulnerabilities found in

real systems are caused by human error: developers

neglected to include checks or did not do sufficient

input validation [9].To put it another way,

developers attempted to identify and prevent

SQLIAs in these programs, but they did not

succeed in doing so sufficiently or at all necessary

sites. These instances offer more proof of the

drawbacks of relying on developers' protective

code[10].

Furthermore, the widespread marketing

and acceptance of so-called "pseudo cures"

undermine defensive coding-based strategies. We

go over two of the most popular hoaxes. The first

of these fixes is scanning user input for SQL

operators like the solitary quote or comment

controller as well as SQL keywords like

“WHERE”, "FROM," and "SELECT"[8]. This

idea's justification is that the existence of such

terms and processors can point to a failed SQLIA

attempt. Given that SQL operators may be used to

express formulae or even names like O'Brian and

that many programs allow for the inclusion of SQL

keywords as part of regular text entries, this

method inevitably leads to a significant percentage

of false positives. The second often advocated "fix"

is to employ prepared statements or stored

procedures to stop SQLIAs. Sadly, unless

developers strictly follow defensive coding rules,

functions and set by organizations can likewise be

susceptible to SQLIAs.

Figure 1: The SQL Injection Attacks

iii. Detection

Researchers have proposed a range of

ways to assist developers and overcome the

shortcomings of defensive coding. First, testing of

black box is where in order to check Web

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 2 Feb. 2023, pp: 822-833 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0502822833 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 825

applications for SQL injection susceptibilities,

Huang and colleagues suggest WAVES, a black-

box method. To locate all prospective SQLIA

injection points in an online application, the

approach makes use of a web crawler. It then

creates attacks that particularly aim for those places

utilizing a pre-set set of attacking tactics and

methods[10]. The application's response to the

attacks is then monitored by WAVES, which

utilizes machine learning to improve its attacking

plan. By directing its testing with machine learning

techniques, the specific technology surpasses

conventional penetration-testing methods.

Unfortunately, it cannot ensure completeness like

all other black-box and exploitation test

methods[11]. In terms of Static code checkers, a

method for statically evaluating the kind of

accuracy of SQL queries created dynamically is

JDBC-Checker[12]. This method was not designed

to identify and stop conventional SQLIAs, but it

may still be used to stop attacks that rely on type

mismatches in a constantly generated request

message. One of the main sources of SQLIA

vulnerabilities in programming is poor type

checking of input, which JDBC Checker is able to

identify. Yet, because the majority of these exploits

comprise of models and type-correct queries, this

method would miss more widespread SQLIAs.The

existing SQL detection algorithm is built on

grammatical and structural patterns for legitimate

and erroneous query requests. SQL detection is

precise and false-positive whenever a legitimate

query request includes a phrase that the semantic

tree conceptual model considers suspicious[13].

iv. Prevention

To ensure that the SQL queries created in

the application level contain no tautology,

Wassermann and Su present a method that

combines automated reasoning with static analysis

[14]. This method's main flaw is that it can only

identify and avoid tautologies; it cannot identify

other forms of attack. In terms of combined static

and dynamic analysis, A prototype approach called

AMNESIA combines real time monitoring and

static analysis [15]. AMNESIA's static phase

employs analysis method to create models of the

various query types that applications are permitted

to produce at every stage of database access.

AMNESIA's dynamic phase involves monitoring

all inquiries before they are delivered to the system

and comparing them to the models that were

created statically. The database identifies queries

that break the model as SQLIAs and forbids them

from running[6]. The developer is responsible for

cleaning up all input, not only that which comes

through online forms such as login forms.

preventing database issues from displaying on the

live version of your website [13].

IV. CROSS-SITE SCRIPTING (XSS)
i. Introduction

XSS vulnerabilities are quite similar to

SQL injection problems in a number of ways. This

kind of attack takes use of an application's output

function, which makes use of user input that has

not been properly cleaned up.Cross-site scripting

XSS vulnerabilities target the HTML output

function that transmits data to the browser, in

contrast to SQL injection vulnerabilities, which aim

to compromise the query function that

communicates with the database. Cross-site

scripting is a kind of hacking that, in general, refers

to a method that allows an attacker to transfer

damaging information from a user and gather data

from the victim by exploiting holes in the code of a

web application. Cross-site scripting [16].The most

fundamental component of XSS injection is the use

of special characters for the purpose of

transitioning web browser interpreters from a data

context to a code context. 1 For example, when an

HTML page references a user input as data, an

attacker might include the tag <script>, which can

invoke the Java- Script interpreter. If the

application does not filter these special characters,

a successful XSS injection gives the attacker the

ability to perform attacks such as account takeover,

cookie poisoning, denial of service (DoS), and

manipulation of web content. A variety of input

sources, including external files, cookies, URLs,

and HTML forms, are often altered by attackers.

JavaScript is the most common choice for

attackers, although XSS may also occur with

VBScript, Flash, and other client-side languages

that browsers might be able to comprehend[17].

ii. Techniques

One way to manually test for stored and

reflected XSS vulnerabilities is to manually insert a

JavaScript snippet into each and every HTML input

field. This may be done in order to manually test

for vulnerabilities. The next step is to determine

whether HTTP responses include the input that was

supplied. Utilizing the browser developer tools may

make manual testing for DOM-based XSS

vulnerabilities caused by URL manipulation

simpler. These vulnerabilities may arise when a

URL is manipulated. On the other hand, analyzing

the JavaScript code for non-URL DOM-based

attacks such as the non-HTML sinks

document.cookie and setTimeout may be highly

challenging and time consuming [18]. XSS

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 2 Feb. 2023, pp: 822-833 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0502822833 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 826

vulnerabilities may be typically divided into three

categories: reflected, stored, and DOM-based.

These categories are determined by how HTML

websites connect to user inputs. A Web application

server programme that makes use of received user

input in the leaving website has reflected or

nonpersistent XSS problems. These flaws might

cause the input to be misused. These XSS attacks

are frequently found in the results of search queries

as well as error messages. The XSSed project

(http://xsed.com) has discovered a large number of

reflected XSS weaknesses in McAfee, which are

vulnerabilities that cybercriminals might use to

deceive users into downloading malware. Stored

cross-site scripting vulnerabilities, also known as

persistent XSS vulnerabilities, occur when a server

programme saves user input, including injected

code, in a permanent data storage, such as a

database, and then accesses it on a website at a later

time. XXS vulnerabilities are often exploited

during cyberattacks directed at social networking

websites. One example of this kind of situation is

the Samy worm, which, on October 4, 2005, less

than 24 hours after it was released, exponentially

grew the friend lists of one million Myspace users,

ultimately leading to a denial-of-service attack.

Both reflected and stored cross-site scripting

attacks are possible if server-side scripts do not

correctly manage user input. However, DOM-based

XSS vulnerabilities in web applications arise when

client-side scripts make unchecked references to

user inputs that are then dynamically pulled from

the structure of the Document Object Model. A

DOM-based XSS vulnerability is shown in the

Bugzilla bug 272620

(https://bugzilla.mozilla.org/showbug.cgi?id=2726

20), which may be seen here[19]. For instance, an

adversary may use phishing in conjunction with the

XSS virus in order to alter the DOM structure and

data on a web page. The login box for the website

is imitated by the JavaScript code. After being

entered by the user, the username and password are

sent to the server, where they are then checked for

XSS vulnerabilities [20].

Attacks using XSS may be grouped into three

categories: DOM-based, persistent, or non-

persistent[21].

1) XSS that is based on domes. Dome-based cross-

site scripting is often referred to as type 0 XSS. It is

an attack that takes place on the client side and

occurs when the client-side script of a web

application inserts data from the user into the

document object model (DOM). After that, the web

application simultaneously read data from the

Document Object Model. An adversary might even

include a payload within the DOM itself, which

would be carried out whenever the data was read

back from the DOM. Web application firewalls and

security professionals who check the server log

may have problems spotting this attack since the

payload of the attacker is never sent to the server

[22].

Figure 2: DOM XSS Attack

2) Stored XSS over an extended period of time or

type 1 There are a few other names for cached

XSS, including XSS. The attacker made use of a

malicious script that was included into the attack

and was saved on the server in a persistent location.

The comments section of a blog post or forum

article is one of the most common places where this

sort of assault is carried out, making it one of the

most common examples [22].

Figure 3: Stored XSS Attack

3) Reflected XSS non-persistent type 2

vulnerability The term "XSS" may also be used to

refer to "reflected XSS." The perpetrator of this

attack starts by creating a link that leads to a

malicious website. After the malicious link has

been crafted, the system will email the user with

the URL and encourage them to follow the link.

After that, the user sends a request to the server

asking for access to the necessary page. A reliable

server will reply to the user's request and then

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 2 Feb. 2023, pp: 822-833 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0502822833 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 827

provide them with a return page that includes

harmful code. When a person logs in, a potentially

dangerous cross-site scripting link is launched

inside their browser, giving the attacker with access

to sensitive data[22].

Figure 4: Reflected or Indirect XSS attack

iii. Detection

Filtering and a variety of other detection

approaches are being used in the investigation of

cross-site scripting (XSS) attacks. This section

provides an explanation of the relevant

work.Analysis of strings via the use of static

analysis Learning static string analysis is

something that is recommended for imperative

programming languages by A.S. Christensen, A.

Mller, and M.I. Schwartzbach. They demonstrated

the usefulness of string analysis for troubleshooting

the reflective code of Java programmes and

checking dynamically produced SQL queries for

faults [23]. In order to do an analysis of Java, they

used finite state automata as a target language

representation. They prefer FSAs due to the fact

that regular language procedures may be used to

shut them. In addition to this, computational

linguistics techniques, such as the usage of finite

state automata, were used in order to provide

accurate CFG approximations [24]. This method is

not as effective as prior string analyses in

identifying XSS vulnerabilities since the origin of

the input was not determined, and Finite State

Automata had to be created between each

operation. Consequently, this method is less

efficient. When creating a string analysis for PHP,

Y. Minamide used a methodology that was quite

similar to this one, although he did not attempt to

approximate CFGs to finite state machines. This

technique checks the presence of “<script>” tag in

the whole document [25]. This technique is not at

all effective for identifying XSS concerns since

online programmes more regularly utilise their own

scripts and because there are many different ways

to start a JavaScript interpreter. Because of these

two factors, the methodology is not at all

useful[26].

The authors of Bounded Model

Checking[27]Tsai, use counterexample traces to

reduce the number of sanitization processes

inserted and to pinpoint the major cause of

mistakes. This improves the accuracy of code

instrumentation as well as error reporting. It was

necessary to provide states to variables that

reflected the current degree of trust in order to

conduct a check on the legal flow of information

inside a web application. Using the Bounded

Model Checking strategy, it was now time to

validate the accuracy of each safety state by

confirming that the Abstract Interpretation of the

programme had been correctly interpreted.

Significant inaccuracies were evident in their

methodology, such as the failure to include alias

analysis or the insistence on addressing file

resolution concerns[28].

Techniques for judging the quality of

software In order to locate security flaws in a web

application, Y. Huang, S. Huang, Lin, and Tsai

[11] use a variety of software testing strategies,

such as black-box testing, fault injection, and

behaviour monitoring. This strategy incorporates

black-box testing with user behaviour modelling

and user experience modelling. A great number of

supplementary programmes, such as WebInspect,

APPScan, and ScanDo, have used methods that are

similar to these. Because the purpose of these

approaches is to locate mistakes at an early stage in

the development process, it is possible that they

will not be able to instantly protect web

applications, nor will they be able to ensure that all

flaws will be found[29].

The tactic of tracing the transit of

information from its origin to its destination,

known as the taint propagation approach, is based

on the examination of data flow. Both static and

dynamic techniques make use of this

technique[30]. This strategy is based on the

following presumptions: If sanitization is carried

out throughout each channel, beginning at the

source and ending at the sink, the programme may

be considered safe [31]. Because it is possible for

certain XSS vectors to readily bypass several filters

that are designed to be robust, it is not advisable to

rely just on the user's filter and ignore the

sanitization function. As a direct consequence of

this, it does not provide a dependable strategy for

ensuring security in this scenario [32].

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 2 Feb. 2023, pp: 822-833 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0502822833 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 828

Using Data Provided by Users in

Conjunction with Untrusted Scripts Dangerous

scripts are detected in user-provided data by using

a list of untrusted scripts. This technique raises a

doubt on the approach that Wassermann and Su are

using at the moment. In this particular case, the

procedures that were done included the creation of

policies and untrusted tag regular expressions, as

well as the determination of whether or not the

CFG provided by String taint static analysis and the

created regular expression overlap. In the event that

the outcome was favourable, it was necessary to

carry out further steps. Utilizing script that is not

reliable is a poor concept, despite the fact that it

may seem to be simple. In the similar vein, the

OWASP paper makes the same point[4]. The

article makes it very clear that checking for cross-

site scripting vulnerabilities (XSS) in input or

encrypting output should not be done via

"blacklist" validation. the search and replacement

of a few undesired characters (such as "", ">") that

was badly planned but was utilised efficiently. The

blacklist validation process may be readily

sidestepped by a wide variety of XSS attacks.

Dynamic analysis techniques as well as

embedded policies that the browser is responsible

for enforcing the web application provides the

browser with a whitelist of all safe scripts, which

safeguards the browser from being compromised

by malicious code. It was a good idea to restrict

script execution to those on the provided list, but

because the parsing algorithms used by browsers

differ, a filtering technique that works well for one

browser may not be effective for another browser.

It was a good idea to restrict script execution to

those on the provided list. Even if the method

described in this article is highly effective against

the circumstances described in the previous

sentence, the policy cannot be implemented

without first changing each browser. Because of

this, the online application suffers from scalability

issues, as seen from the perspective of the user

[33]. Every single one of our customers' computers

must have this most recent version of the browser

installed.

Technique of Syntactical Structure Su and

Wassermann proposed a hypothesis that asserts that

the exploited entity's syntactical structure changes

whenever an injection attack is successful[34]. This

theory is known as the syntactical structure

technique. They provide a method for locating

harmful payloads by analysing the syntactic

structure of the output string, which may be found

in their work. It is necessary to provide metadata in

the user input in order to trace this sub-string from

its origin to its destination. This information assists

the modified parser in analysing the syntactical

structure of the dynamically produced string by

marking the end and start locations of the user-

provided data. This information may be found in

the modified parser's output. In addition, the

process was stopped if there was even the slightest

indication of an anomaly. It has been shown that

this method is highly effective in finding injection

vulnerabilities other than XSS. These types of

workflow vulnerabilities are brought on by the

interaction of many modules, and it is not possible

to eliminate them just by examining the syntactic

structure [35].

Noxes is a web proxy that uses a proxy-

based method to prohibit the transfer of sensitive

information from the site of the victim to the site of

a third party. This keeps the victim's information

safe [36]. The elimination of malware as well as its

detection is the purpose of this application-level

firewall. Users have full control over every

connection that comes into or goes out of their

local workstations, down to the most granular level.

When the firewall detects that a connection does

not comply with its rules, it will inquire as to

whether the user wishes to accept or deny the

connection. If a URL is blacklisted, there is no

guarantee that it will prevent cross-site scripting

assaults. The proxy-based technique careful setup

and lacks the capacity to identify errors

automatically. This method may result in a greater

number of false positives due to the fact that it

protects the unexpected connection without

addressing the problem. Pietraszek and Berghe

have developed a method that is based on the

utilisation of an interpreter that tracks untrusted

input at the character level and employs

instrumentation to discover vulnerabilities via

context-sensitive string evaluation at each

vulnerable sink. Pietraszek and Berghe's method

can be found in their paper “A Method Based on

the Utilization of an Interpreter That Tracks

Untrusted In”[37]. This approach is sound, and

after the level of security has been raised, it could

be possible to enhance it by replacing the

interpreter. Changing the interpreter is a strategy

that may be used for a variety of different online

programming languages, such as Java, JSP, and

Servlets. However, it is more difficult to adapt to

this approach for these languages.

Analyses of both the static and dynamic

aspects utilising a lattice-based method In order to

identify potential vulnerabilities, a piece of

software known as WebSSARI combines static and

runtime features, then does static taint propagation

analysis. WebSSARI makes use of an intra-

procedural flow sensitive technique that is based on

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 2 Feb. 2023, pp: 822-833 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0502822833 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 829

a type state and lattice model in order to locate

potential security flaws. This programme will

automatically incorporate runtime safeguards, often

known as sanitization processes, if it determines

that corrupted data has made its way to a sensitive

function after it has detected that the function has

been reached. The intra-procedural type-based

evaluation that this method employs often leads to

the production of erroneous positive and negative

conclusions, which is the approach's primary

shortcoming [38]. In addition to that, this method

considers the outcomes of user-created filters to be

safe. Because of the high probability that a

malicious payload will not be discovered by the

filtering approach that has been used, the genuine

vulnerabilities may not be notified[39].

iv. Prevention

The point of deployment, which may be

either the client's computer or the server's

computer, is one of the most essential

considerations when comparing different XSS

protection approaches.There are two different kinds

of testing tools, which include Both white-box and

black-box vulnerability scanners have been

proposed in earlier studies, and both have been

successfully implemented in real-world scenarios.

Even while these tools may normally aid in the

detection of cross-site scripting vulnerabilities,

there is a compelling argument for adopting

additional security measures for online

applications. This argument is based on the fact

that there is a good need for doing so. It is

suggested to use a firewall at the application level.

This kind of firewall is placed on a security

gateway that sits between the server and the client.

It is responsible for performing all transformations

and checks that are connected to security. The

technology assists Web developers in the

deployment of countermeasures against cross-site

scripting (XSS) attacks by separating the security-

relevant code from the rest of the application and

offering a specialised Security Policy Description

Language to build it [31].

Hybrid Approaches of Mitigation Some

treatments use both traditional and modern hybrid

methods, such as using the web browser. The

server annotates the content that is sent and gives

data on the validity or degree of rights that scripts

have. These annotations are the responsibility of

the web browser, which must validate and enforce

them[40]. BEEP (Browser-Enforced Embedded

Policies) [41]suggests using a modified browser

that blocks any attempts to launch scripts and

compares them to a policy that must be given by

the server. This approach is recommended by the

authors. There are two distinct policy types that

come highly suggested. The scripts were first

approved for use after a whitelist of hashes that the

browser might use to check them against was

created. Second, the HTML source nodes that are

intended to include user-provided content should

be labelled so that the browser can determine if the

location of a script within the DOM tree is inside

user-provided content[42]. This will allow the

browser to determine whether or not user-provided

content is being used. The updated browser

performs a check of each script to ensure that it

complies with the policy, and it prevents scripts

from running if the scripts fail the check. Since the

information flow-based job would result in more

false positives in 2004, [27]a high information flow

rate is not a sign of strength.Validation strategies

and scanners have been put up as potential

solutions to the problem of XSS vulnerabilities

[43].

Additional software engineering

strategies, such as WAVES for security analysis,

have also been published since their inception [44].

However, every one of the proposed methods is

antiquated and would be rendered useless if tags

were allowed in web applications. Even though

Jayamsakthi Shanmugam's solutions are based on

financial and non-financial applications, they do

not manage XSS attacks that come from multiple

interfaces[43]. This is because of the breadth of the

solutions. The information divided into multiple

different trust classes by using randomized XML

namespaces inside Nonce spaces. It is the client's

responsibility to comprehend namespaces, and the

rights to the content must be governed in

accordance with a policy that is supplied along

with the website. By using XPath expressions, the

owner of the website can determine the necessary

trust levels and disallow the inclusion of JavaScript

code in HTML subtrees that are designed to hold

user-submitted material[45]. The previously

described hybrid risk mitigation methods provide

the most effective attributes and the best cost-to-

protection ratio for parameterization. Nevertheless,

they suffer from the same limitation as systems that

are dependent only on the client computer, namely

the need for user machine deployment.

V. DISCUSSION
One of the main challenges in malware

injection attacks is avoiding detection by security

software and other defensive measures. Attackers

may use obfuscation techniques, such as encryption

and packing, to make the malware code harder to

detect. Attackers must carefully select the target

application or system component to inject the

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 2 Feb. 2023, pp: 822-833 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0502822833 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 830

malware into, as not all components are equally

vulnerable. The target must be one that is used by

many users and has a large attack surface but is

also not too well protected. Attackers may need to

first gain access to the target system before they

can inject the malware. This can involve exploiting

vulnerabilities in the system, social engineering

attacks, or other methods. Once the malware has

been injected, attackers need to ensure that it

remains in the system and can survive reboots and

other system changes. This can involve hiding the

malware code, modifying system settings, and

other techniques. Malware injection attacks can

interfere with the normal operation of the target

system, causing crashes and other errors. Attackers

need to carefully manage the injection process to

avoid these types of issues. Antivirus software is

designed to detect and remove malware, so

attackers need to create malware that can evade

detection. They may use techniques such as

polymorphism and metamorphism to make the

malware code look different each time it is

executed.Malware injection attacks are complex

and require a high level of skill and knowledge to

carry out successfully. However, as these attacks

can be highly effective, they remain a significant

threat to computer systems and networks.

We have compared the methods used

today to identify and stop SQLIAs. We initially

determined the different kinds of SQLIAs that are

currently known in order to do this evaluation. We

next assessed the strategies under consideration on

the basis of our ability to spot and prevent such

threats. Additionally, we also delved into many

ways that SQLIAs may be included into

applications and determined which strategies might

be used with specific mechanisms. We outlined

each technique's implementation needs and

assessed how much its prevention and detection

processes might be entirely mechanized. Numerous

solutions struggle to defend against threats that use

badly written stored processes and are concealed by

alternative encodings. Based on the differential

between preventive-focused and broad detection

and prevention strategies, we also discovered a

broad difference in prevention capacities. Future

assessment effort ought to concentrate on assessing

the precision and usefulness of the

methodologies.Both academic institutions and

private companies are actively engaged in ongoing

research on the detection or prevention of XSS.

Even if automated tools and security systems have

been put up in order to accomplish those goals,

none of them is comprehensive or precise enough

to ensure a consistent level of safety for online

applications. One of the primary factors that

contributes to this problem is the absence of a

generally adopted and thorough method for

evaluating system performance. Another factor is

the need to regularly update the system's source

code, which brings with it additional burden. It is

necessary to have a system in place that can be

promptly implemented and functions properly in

order to detect and prevent attacks using cross-site

scripting (XSS). These attacks may be particularly

damaging since they can compromise sensitive data

[46]. The method of detecting code injection may

be used to any other programming language that

you like. It would be sufficient to simply swap out

the encoding module and make use of an encoder

that was developed particularly for each new

language [47].

VI. CONCLUSION
The worrisome rise in the number of

cyberattacks in today's world, in which almost

everything is conducted online, becomes a major

cause for worry. To protect the confidentiality of

sensitive information that belongs to both the

public and the government, certain preventive

measures, such as the creation of new laws or the

revision of existing ones, should be taken by both

the general public and the government. Insufficient

awareness of cyber security measures is one of the

primary factors contributing to these attacks.

Nobody, not even the government or any other

industry, wants to admit that they have been the

target of these attacks or breaches because it will

damage their reputation in the eyes of the public

and make them wonder how they can protect us

and our sensitive information if they themselves are

not protected. This is because admitting that they

have been the target of these attacks or breaches

will cause the public to question how they can

protect us and our information if they themselves

are not protected. This study describes how to

recognize a cyberattack, how hackers get access to

networks, and how we can secure our computer

systems from cyberattacks or stop them from

happening altogether. The purpose of this post is to

raise awareness and provide information for

readers who have a significant concern about the

safety of their networks, application, websites or

the data they store.

VII. ACKNOWLEDGEMENT
The authors would like to thank all School

of Computing members who were involved in this

study. This study wasconducted for the purpose of

Ethical Hacking & Penetration Testing Research

Project. This work was supported by Universiti

Utara Malaysia.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 2 Feb. 2023, pp: 822-833 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0502822833 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 831

REFERENCES
[1]. M. Hasan, Z. Balbahaith and M. Tarique,

"Detection of SQL injection attacks: a

machine learning approach," In 2019

International Conference on Electrical and

Computing Technologies and Applications

(ICECTA), pp. 1-6, November 2019.

[2]. H. Maurel, S. Vidal and T. Rezk,

"Comparing the Detection of XSS

Vulnerabilities in Node. js and a Multi-tier

JavaScript-based Language via Deep

Learning," In ICISSP 2022-8th International

Conference on Information Systems Security

and Privacy, February 2022.

[3]. A. Bhardwaj, C. Saheb Singh, B. Aniket, M.

Shubham and U. Deepak, ""Detection of

Cyber Attacks: XSS, SQLI, Phishing

Attacks and Detecting Intrusion Using

Machine Learning Algorithms."," In 2022

IEEE Global Conference on Computing,

Power and Communication Technologies

(GlobConPT), pp. 1-6, September 2022.

[4]. G. E. Rodríguez, J. G. Torres, P. Flores and

D. E. Benavides, "Cross-site scripting (XSS)

attacks and mitigation: A survey," Computer

Networks, vol. 166, p. 106960, January

2020.

[5]. W. G. Halfond, J. Viegas and A. Orso, "A

classification of SQL-injection attacks and

countermeasures," In Proceedings of the

IEEE international symposium on secure

software engineering, pp. 13-15, March

2006.

[6]. F. Q. Kareem, S. Y. Ameen, A. A. Salih, D.

M. Ahmed, S. F. Kak, H. M. Yasin and N.

Omar, "SQL injection attacks prevention

system technology," Asian Journal of

Research in Computer Science, pp. 13-32,

July 2021.

[7]. P. Roy, R. Kumar and P. Rani, "SQL

Injection Attack Detection by Machine

Learning Classifier," In 2022 International

Conference on Applied Artificial

Intelligence and Computing (ICAAIC), pp.

394-400, May 2022.

[8]. L. Ma, D. Zhao, Y. Gao and C. Zhao,

"Research on SQL injection attack and

prevention technology based on web," In

2019 International Conference on Computer

Network, Electronic and Automation

(ICCNEA), pp. 176-179, September 2019.

[9]. Y. W. Huang, F. Yu, C. T. C. H. Hang, D. T.

Lee and S. Y. Kuo, "Securing web

application code by static analysis and

runtime protection," In Proceedings of the

13th international conference on World

Wide Web, pp. 40-52, May 2004.

[10]. M. Alenezi, M. Nadeem and R. Asif, "SQL

injection attacks countermeasures

assessments," Indonesian Journal of

Electrical Engineering and Computer

Science, pp. 1121-1131, February 2021.

[11]. Y. W. Huang, S. K. Huang, T. P. Lin and C.

H. Tsai, "Web application security

assessment by fault injection and behavior

monitoring," In Proceedings of the 12th

international conference on World Wide

Web, pp. 148-159, May 2003.

[12]. C. Gould, Z. Su and P. Devanbu, "JDBC

checker: A static analysis tool for

SQL/JDBC applications," In Proceedings

26th International Conference on Software

Engineering, pp. 697-698, May 2004.

[13]. S. Chopra, H. Marwaha and A. Sharma,

""Cyber-Attacks Identification and Measures

for Prevention."," In International

Conference on Cybersecurity and

Cybercrime, pp. 83-90, 2022.

[14]. G. Wassermann and Z. Su, "Static detection

of cross-site scripting vulnerabilities," In

Proceedings of the 30th international

conference on Software engineering, pp.

171-180, May 2008.

[15]. W. G. Halfond and A. Orso, "Combining

static analysis and runtime monitoring to

counter SQL-injection attacks," In

Proceedings of the third international

workshop on Dynamic analysis, pp. 1-7,

May 2005.

[16]. V. Nithya, S. L. Pandian and C. Malarvizhi,

"A survey on detection and prevention of

cross-site scripting attack," International

Journal of Security and Its Applications, pp.

139-152, 2015.

[17]. H. B. S. Reddy, "A Proposal: For Emerging

Gaps in Finding Firm Solutions for Cross

Site Scripting Attacks on Web

Applications," Journal homepage: www.

ijrpr. com ISSN, pp. 3982-3985, July 2022.

[18]. J. Kumar, A. Santhanavijayan and B.

Rajendran, "Cross site scripting attacks

classification using convolutional neural

network," In 2022 International Conference

on Computer Communication and

Informatics (ICCCI), pp. 1-6, January 2022.

[19]. L. K. Shar and H. B. K. Tan, "Defending

against cross-site scripting attacks,"

Computer, pp. 55-62, 2011.

[20]. P. Panwar, H. Mishra and R. Patidar, "An

Analysis of the Prevention and Detection of

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 2 Feb. 2023, pp: 822-833 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0502822833 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 832

Cross Site Scripting Attack," International

Journal, pp. 30-34, January 2023.

[21]. R. Kadhim and M. Gaata, "A hybrid of CNN

and LSTM methods for securing web

application against cross-site scripting

attack," Indonesian Journal of Electrical

Engineering and Computer Science , pp.

1022-1029, February 2021.

[22]. M. D. Ambedkar, N. S. Ambedkar and R. S.

Raw, "A comprehensive inspection of cross

site scripting attack.," In 2016 international

conference on computing, communication

and automation (ICCCA), pp. 497-502,

April 2016.

[23]. A. S. Christensen, A. Møller and M. I.

Schwartzbach, "Precise analysis of string

expressions," In Static Analysis: 10th

International Symposium, SAS 2003 San

Diego, CA, USA, June 11–13, 2003

Proceedings, May 2003.

[24]. M. Mohri and M. J. Nederhof, "Regular

approximation of context-free grammars

through transformation," Robustness in

language and speech technology, pp. 153-

163, 2001.

[25]. Y. Minamide, "Static approximation of

dynamically generated web pages," In

Proceedings of the 14th international

conference on World Wide Web, pp. 432-

441, May 2005.

[26]. F. M. M. Mokbal, W. Dan, W. Xiaoxi, Z.

Wenbin and F. Lihua, "XGBXSS: an

extreme gradient boosting detection

framework for cross-site scripting attacks

based on hybrid feature selection approach

and parameters optimization," Journal of

Information Security and Applications, p.

102813, May 2021.

[27]. Y. W. Y. F. Huang, C. T. C. H. Hang, D. T.

Lee and S. Y. Kuo, "Verifying web

applications using bounded model

checking," In International Conference on

Dependable Systems and Networks, pp. 199-

208, 2004.

[28]. J. Feist, G. Grieco and A. Groce, "Slither: a

static analysis framework for smart

contracts," n 2019 IEEE/ACM 2nd

International Workshop on Emerging Trends

in Software Engineering for Blockchain

(WETSEB), pp. 8-15, May 2019.

[29]. J. Li, "Vulnerabilities mapping based on

OWASP-SANS: a survey for static

application security testing (SAST).,"

Annals of Emerging Technologies in

Computing (AETiC), 2020.

[30]. Ö. A. Aslan and R. Samet, "A

comprehensive review on malware detection

approaches," IEEE Access, pp. 6249-6271,

December 2020.

[31]. D. Balzarotti, M. Cova, V. Felmetsger, N.

Jovanovic, E. Kirda, C. Kruegel and G.

Vigna, "Saner: Composing static and

dynamic analysis to validate sanitization in

web applications.," In 2008 IEEE

Symposium on Security and Privacy (sp

2008), pp. 387-401, May 2008.

[32]. Z. Su and G. Wassermann, "The essence of

command injection attacks in web

applications," Acm Sigplan Notices, pp.

372-382, 2006.

[33]. P. Bisht and V. N. Venkatakrishnan, "XSS-

GUARD: precise dynamic prevention of

cross-site scripting attacks," Detection of

Intrusions and Malware, and Vulnerability

Assessment: 5th International Conference,

DIMVA, pp. 23-43, July 2008.

[34]. S. D. Samarin and M. Amini, "Preventing

SQL injection attacks by automatic

parameterizing of raw queries using lexical

and semantic analysis methods," Scientia

Iranica, pp. 3469-3484, January 2019.

[35]. D. Balzarotti, M. Cova, V. V. Felmetsger

and G. Vigna, "Multi-module vulnerability

analysis of web-based applications," In

Proceedings of the 14th ACM conference on

Computer and communications security, pp.

25-35, October 2007.

[36]. E. Kirda, C. Kruegel, G. Vigna and N.

Jovanovic, "Noxes: a client-side solution for

mitigating cross-site scripting attacks," In

Proceedings of the 2006 ACM symposium

on Applied computing, pp. 330-337, April

2006.

[37]. T. Pietraszek and C. V. Berghe, "Defending

against injection attacks through context-

sensitive string evaluation," In Recent

Advances in Intrusion Detection: 8th

International Symposium, pp. 124-145,

September 2006.

[38]. Y. Xie and A. Aiken, "Static Detection of

Security Vulnerabilities in Scripting

Languages," In USENIX Security

Symposium, pp. 179-192, August 2006.

[39]. M. A. Kausar, M. Nasar and A. Moyaid,

"SQL Injection Detection and Prevention

Techniques in ASP .NET Web Application,"

International Journal of Recent Technology

and Engineering (IJRTE, pp. 7759-7766,

September 2019.

[40]. Z. C. S. S. Hlaing and M. Khaing, "A

detection and prevention technique on sql

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 2 Feb. 2023, pp: 822-833 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0502822833 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 833

injection attacks," In 2020 IEEE Conference

on Computer Applications (ICCA), pp. 1-6,

February 2020.

[41]. T. Jim, N. Swamy and M. Hicks, "Defeating

script injection attacks with browser-

enforced embedded policies," In

Proceedings of the 16th international

conference on World Wide Web, pp. 601-

610, May 2007.

[42]. E. Uzun, "A novel web scraping approach

using the additional information obtained

from web pages," IEEE Access, pp. 61726-

61740, March 2020.

[43]. J. Shanmugam and M. Ponnavaikko, "A

solution to block cross site scripting

vulnerabilities based on service oriented

architecture," In 6th IEEE/ACIS

International Conference on Computer and

Information Science, pp. 861-866, July

2007.

[44]. T. Pattewar, H. Patil, H. Patil, N. Patil, M.

Taneja and T. Wadile, "Detection of SQL

injection using machine learning: a survey,"

International Research Journal of

Engineering and Technology (IRJET), pp.

239-246, November 2019.

[45]. H. Wu, Z. Yu, D. Huang, H. Zhang and W.

Han, "Automated enforcement of the

principle of least privilege over data source

access," In2020 IEEE 19th International

Conference on Trust, Security and Privacy

in Computing and Communications

(TrustCom), pp. 510-517, December 2020.

[46]. S. Abaimov and G. Bianchi, "CODDLE:

Code-injection detection with deep

learning," IEEE Access, pp. 128617-128627,

2019.

[47]. M. Alghawazi, D. Alghazzawi and S.

Alarifi, "Detection of sql injection attack

using machine learning techniques: a

systematic literature review," Journal of

Cybersecurity and Privacy, pp. 764-777,

September 2022.

